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Abstract— Argentine tango has been shown to help psy-
chological and physical health by reducing perceived levels
of depression and stress, similar and at times better than
meditation. An often reported experience in Argentine tango
is “flow”, which is described as total involvement from the
dancers. While this state has been self-reported by experienced
dancers while dancing, it has yet to be quantified in real-
time. However, with the emergence of portable and wearable
devices for the acquisition of physiological signals such as
electroencephalography (EEG) and electrocardiography (ECG),
and recent innovations in EEG artifact removal algorithms, this
quantification may now be possible. In this work presents a case
study where we aim to first validate the potential of recording
usable EEG and ECG data from dancers while dancing, in
an unobtrusive manner, as well as investigate the existence of
neurophysiological correlates of Argentine tango flow.

Index Terms— Argentine tango, ECG, EEC, flow, hyperscan.

I. INTRODUCTION

Argentine tango music has been composed by many or-
chestras during the last century, amounting to a large quantity
of music offering a wide stylistic gamut [1]. Argentine tango
can be roughly subdivided into three styles: tango, milonga
and vals, each suggesting different levels of playfulness and
dancing style. While a vals (3/4 beats) can be thought of
a smooth ride, a milonga (2/4 beats) sports an underlying
playful habanera rhythm often danced in syncopated double
time steps by advanced dancers. Dancers improvise along the
dance floor using a loosely defined vocabulary of Argentine
tango-specific foundational movements allowing dancers to
express their personal interpretation of the songs. In recent
years, therapies based on Argentine tango have been studied
for the improvement of fitness and balance in older adults [2],
as therapy for Parkinson disease [3], [4], and depression [5],
and as intervention for depression, anxiety, stress, fatigue,
and insomnia [6]. Indeed, dancing with a partner to music
has more positive emotional effects than without a partner
or music [7].

Flow has been defined as “holistic sensation that people
feel when they act with total involvement” [8], [9]. It is a
mental state in which a person is full immersed in an activity,
feeling and performing at their best, colloquially also known
as “being in the zone” [10]. This subjective experience has
been reported across a wide range of activities, such as
sports, learning, dancing, playing music and working. It
remains a mystery as to why some individuals report never

experiencing it while others report having experienced it
multiple times a day [11].

Flow is often linked to moments in the activities when
demanding challenges meet a high level of skill. A state akin
to flow has been described in dancing [12] and reported by
Argentine tango dancers as “tango trance” using qualitative
methods [13], [14]. More recently, flow was quantified in
Argentine tango dancers as one of several psychological
variables associated with the regular and long-term practice
of Argentine tango [15]. Using the Short Dispositional Flow
Scale (SDFS-2), an abbreviated 9-item version of the long
form of the Dispositional Flow Scale-2 [10], the authors
found flow to be the strongest predictor of both regular and
long-term tango practice [15].

Typically, the assessment of flow relies on questionnaires
that are administrated after the experience, event or task
[16]. While the assessment of flow could be carried out
during the performance of the task, it can interrupt the
flow state. To overcome this problem, methods that use
physiological signals have gained attention in recent years.
For example, [17] presents a viable approach for the use
of electromyogram (EMG) and electroencephalogram (EEG)
signals to characterize the flow state in sports. The study
presented in [18] investigated the correlates between EEG
features and a mental arithmetic task designed to evoke
flow. The findings in this study suggest the feasibility to
discriminate the flow state from other states with EEG
features (powers in theta and alpha bands) from the frontal
and central area of the scalp. Similarly, [19] studied the
effect of skills-demands-compatibility on the emergence of
flow with electrocardiogram (ECG) signals and found a
reduced heart rate variability (HRV) and increased salivary
cortisol levels. They deduced that flow experiences combine
subjectively positive elements with physiological elements
reflecting mental load and strain.

Additionally, psychological synchrony between individ-
uals emerges in tasks requiring physical and mental co-
ordination. Quantifying such synchrony can help predict
task performance, collaboration quality, and learning [20].
Physiological synchrony has been reported in respiration and
heart rate signals for choir and surgical teams [21], [22],
in electrodermal activity between presenter and audience to
quantify the amount of engagement [23], and more recently
in EEG for subjects participating in cooperative multi-person
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TABLE I
DURATION AND DESCRIPTION OF THE USED ARGENTINE TANGO SONGS.

Song Duration (s) Description
S 181 Very rhythmic song
C 161 Very melodic dramatic song
P 205 Melodic and rhythmic music

scenarios [24]. The approach of monitoring multiple people
concurrently is known as hyperscanning [25]. Here, syn-
chrony may play a crucial role; as the saying goes “it takes
two to (Argentine) tango”. As such, to study the synchrony
between dancers, physiological signals need to be acquired
simultaneously from the lead and follow dancers.

Moreover, multimodal approaches have been used in the
fields of brain-computer interfaces [26], [27], quality-of
experience [28], [29], and mental workload assessment [30]
to provide robustness against movement artifacts. This is
true as artifacts rarely affect all the modalities in the same
manner, and since different modalities can provide different
information about the same physiological phenomenon, in-
creased robustness is achieved. Since movement artifacts are
present during dancing, it is unclear if reliable multimodal
signals can be acquired in an unobtrusive manner from mul-
tiple dancers concurrently. This initial investigation aimed
to validate the hypothesis that it was possible to not only
measure EEG and ECG signals from dancers under different
dancing and no-dancing conditions, but to also assess the
impact of dancing motion on the quality of the acquired
signals, and ultimately, to find neurophysiological correlates
of flow and measures of dancer synchrony. To the best of
the authors knowledge, this case study is the first attempt
at hyperscanning of Argentine tango dancers under varying
flow states.

The remainder of this article is organized as follows:
Section II describes the experimental protocol, the devices
used for signal acquisition, along with pre-processing, feature
extraction, and evaluation methods. In Section III, in turn,
the experimental results are presented and discussed. Finally,
conclusions are drawn in Section IV.

II. METHODS AND MATERIALS

A. Experimental protocol

Two experienced Argentine tango dancers (co-authors IP
and BA) underwent together different experimental con-
ditions while Argentine tango songs were played. In our
experiments, three tango songs were used and selected based
on their characteristics. These songs were: “S.O.S” (S) by
Francisco Canaro (1934), “Cascabelito” (C) by Osvaldo
Pugliese (1955), and “Poema” (P) also by Francisco Canaro
(1935). The duration and description of the songs are pro-
vided in Table I.

The experimental conditions explored in this study were:
a) sitting with eyes closed; b) sitting with eyes open; c)
dancing in open embrace; d) dancing in close embrace; e)
dancing without contact; and f) dancing individually. In all
the dancing experimental conditions, BA and IP were the

TABLE II
LIST OF CONDITION-SONG PAIRS IN THE EXPERIMENTAL PROTOCOL.

Songs
Experimental condition S C P
a) Sitting with eyes closed 1 2 9, 11
b) Sitting with eyes open 3 4 10
c) Dancing in open embrace 6
d) Dancing in close embrace 15 7, 12 8, 13
e) Dancing without contact 14
f) Dancing individually 5

Fig. 1. Experimental protocol timeline. Refer to Table II for a description
of the 15 conditions.

lead and follow dancers, respectively. A total of 15 trials
(pairs of condition-song) were performed, as presented in
Table II.

After each song, there was a break in which each par-
ticipant filled a self-evaluation questionnaire to report the
flow level that was experienced during the song. The flow
level was reported on a 5-point scale, where 1 meant “low”,
and 5 “deep” flow states. Finally, taking in consideration the
duration of the songs and breaks, the experimental protocol
had a total duration of over 2 hours. The timeline for the
experimental protocol is presented in Figure 1.

B. Data acquisition

Due to the characteristics of the experimental protocol,
two wearable devices were used to acquire EEG and ECG
signals. Acquisition of EEG signals was carried out with a
standard EEG textile cap, dry electrodes, and an OpenBCI
Cython board (OpenBCI, USA). Note that the OpenBCI
board is attached to the cap. A total of 8 channels were
acquired with a sampling frequency of 125 Hz. The EEG
electrodes were placed over the frontal cortex with the idea
of registering neuronal activity related to higher cognitive
functions, the ground and bias electrodes were placed at the
mastoids. The location of the electrodes according to the
international 10-20 system is depicted in Figure 2. For ECG
signals, we made use of the BioHarness3 (BH3) cheststrap
(Zephyr Technology Corporation, USA). In addition to the
EEG and ECG signals, both devices also measured triaxial
acceleration, thus providing details about head and body
movements. For communication, the OpenBCI uses a custom
protocol over Bluetooth while the BH3 uses a standard
Bluetooth protocol. To warrant an optimal reception of the
data stream from the devices regardless the position of the
dancers, the Bluetooth receptors for both devices were hung
from the ceiling with a height of 2 m over the center of the
experiment room.
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Fig. 2. EEG electrode locations according the international 10-20 system.

C. EEG pre-processing and feature extraction

EEG signals were inspected to detect and reject railed
channels and discontinuities in the data steam, if any. After
inspection, EEG signals were filtered with a zero-phase finite
impulse response (FIR) band-pass filter with a bandwidth
0.5–30 Hz. Moreover, motivated by previous findings with
the use of low-density EEG signals, [31], [32], we used the
wavelet-enhanced independent component analysis (wICA)
algorithm to remove artifacts and enhance the EEG signal
[33].

Classical spectral power features were then extracted for
each recorded channel in 8 s epochs with 4 s overlap between
consecutive windows. The spectral features computed were:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), low-
alpha (8–10 Hz), high-alpha (10–12 Hz), and beta (12–30
Hz). The power for each individual band was then normal-
ized by the power from the fullband (0.5-30 Hz) [31]. These
normalized powers were log-transformed with 10log10( ), so
their values in dB could follow a Gaussian distribution [34].

D. ECG pre-processing and feature extraction

The ECG signal was visually analyzed to ensure good
quality of QRS complex of the segments recorded. The inter-
beat interval (IBI) series was extracted from the ECG signal
as follows. First, the ECG was filtered using a 5th order
band-pass IIR filter with a bandwidth 4-40 Hz to enhance
the QRS complex. This was followed by an energy based
QRS detection algorithm [35], which is an adaption of the
popular Pan-Tompkins algorithm [36]. Visual inspection was
performed on a sub-sample of the dataset to ensure beat
detection was reliable. The IBI series was further filtered to
remove outliers using range based detection (≥ 280 ms and
≤ 1500 ms), moving average outlier detection, and a filter
based on percent change in consecutive RR values (≤ 20%),
as implemented in [37].

Various benchmark time- and frequency- domain features
were then extracted [38] from the enhanced IBI series.
Time domain features corresponded to mean RR, standard
deviation RR (SDRR), RMSSD, and pNN50. For frequency
domain analysis, first the tachogram was obtained by resam-
pling the RR series at 4 Hz sampling frequency with cubic

Fig. 3. Self-reported flow ratings scaled to [0,1] for lead and follow dancers.
Trials are shaded by groups: Sitting or Dancing.

spline interpolation. Traditional spectral energy features were
then calculated, namely low frequency (LF), high frequency
(HF) and very low frequency (VLF) powers, normalized LF
(LFnorm) and HF (HFnorm) powers, LF/HF ratio and total
power. These features were extracted for the two dancers for
each trial with 60-second windows and 45-second overlap.
In case of correlation analysis with the self-reported flow
scores, these features were aggregated by taking the mean
over all epochs for the trial.

E. Exploratory analysis

From the extracted EEG and ECG features, the following
two main aspects were explored: (i) the correlation was
computed between features extracted from the neurophys-
iological signals and the self-reported flow levels under
different experimental conditions; and (ii) the (multimodal)
temporal synchrony between the two dancers under the
different experimental conditions.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Flow ratings

The self-reported flow scores scaled to [0,1] are presented
in Figure 3. During the experimental protocol, there were
technical issues during the registering of trial #2. For the
analysis, the trials were divided into two groups: sitting
(trials 1, 3, 4, 9, 10 and 11), and dancing (trials 6, 7, 8,
12, 13, 15). Trials 5 and 14 were not considered in the
dancing group because the conditions in these trials, dancing
individually, and dancing without contact, respectively, were
explicitly designed to prevent a flow state in the dancers.
The Spearman’s correlation values for flow scores between
dancers were: 0.35 for sitting and -0.33 for dancing trial
groups.

B. EEG correlates and synchrony

Regarding the quality of the EEG signals, from the vi-
sual inspection before and after signal pre-processing, we
observed that most of the movement artifacts were accurately
removed with the use of the bandpass filter and the wICA
algorithm. This can be seen in Figure 4. To verify the
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Fig. 4. Example of removal of motion artifacts in EEG signals.

Fig. 5. Distributions of the magnitude of the acceleration vector in the
sitting and dancing trials for (a) lead, and (b) follow dancers.

removal of the movement artifacts, the correlation between
the magnitude of the acceleration vector and each EEG
channel was computed for each song. It was found that these
values were not significantly different between the sitting
and the dancing trials for neither the lead nor the follow
dancer. Unlike other physical activities such as running, the
acceleration in the head during our experimental protocol did
not present values larger than 1 G ± 0.1 G. The distributions
of the magnitude of the acceleration vector in the sitting and
dancing trials are shown in Figure 5.

For each dancer, the correlates between flow and EEG
spectral features, calculated with Spearman’s rank correlation
(ρS), were computed for the two trial groups, namely sitting
and dancing. There was one flow rating for each trial; as
such, the EEG spectral features were averaged first across
electrodes, and later across epochs during the trial. Fig-
ure 6 shows the Spearman’s correlation values for different
conditions, separately for the lead and follow dancers. It
can be noted that for both dancers in the sitting condition,
the highest positive correlations were obtained with spectral
features in the alpha band, and the low frequency bands (delta
and theta) consistently presented negative correlation values.
For the dancing condition, in turn, only correlation for the

Fig. 6. Correlation between self-reported flow scores and EEG features.

spectral features in the theta and beta bands had the same
sign in both dancers.

We also explored the synchrony of EEG spectral features
between dancers. For this purpose, for each trial, two time
series, one from the lead dancer and one from the follow
dancer, were obtained for each spectral feature, and the
Spearman’s correlation was calculated. The ρS values for
each spectral feature in each trial are presented in Table III.
It possible to observe that all the spectral features present
low ρS values in the sitting trials. On the other hand, on
average, for the dancing trial delta and beta bands present
values of ρS > 0.3.

C. ECG correlates and synchrony

The correlations between the self-reported flow scores and
the HRV features for both dancers were calculated for sitting
and dancing trial groups. The averaged features for each
trial were compared against the flow score for that trial.
Spearman’s correlation of the features for both dancing and
sitting trial groups for both dancers are given in Table IV. We
observed that for sitting trials the correlations are generally
low across all features for both the dancers. This is specially
the case for time domain features while being slightly higher
for frequency domain features (LF power for lead dancer
and HF power for follow dancer). These features directly
represent the sympatho-vagal balance of the body as well
as individual activations of the sympathetic and parasym-
pathetic systems [38]. In turn, we found higher (absolute)
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TABLE III
EEG FEATURES SYNCHRONY (SPEARMAN’S CORRELATION) BETWEEN

THE DANCERS ACROSS DIFFERENT TRIALS.

Spectral features
Trial Song delta theta alpha alpha1 alpha2 beta

1 S -0.13 -0.24 -0.25 -0.17 -0.10 0.28
3 S 0.02 -0.27 0.3 0.29 0.37 -0.32
4 C 0.49 -0.05 -0.07 -0.29 0.16 0.11
6 C 0.45 0.40 0.03 -0.05 0.21 0.11
7 C 0.29 0.07 0.00 -0.06 -0.13 0.62
8 P 0.53 0.14 -0.03 0.01 -0.05 0.52
9 P 0.11 -0.16 0.12 0.20 0.04 0.12
10 P -0.40 0.22 -0.30 -0.29 -0.08 0.04
11 P -0.06 0.07 -0.10 -0.20 -0.34 -0.03
12 C 0.53 0.12 -0.19 -0.05 0.05 0.17
13 P 0.34 0.08 -0.44 -0.17 -0.11 0.27
15 S -0.21 -0.24 -0.19 -0.29 -0.12 -0.14
sit

avg. — 0.01 -0.07 -0.05 -0.08 0.01 0.03

dance
avg. — 0.32 0.10 -0.13 -0.10 -0.02 0.26

TABLE IV
CORRELATION BETWEEN SELF-REPORTED FLOW SCORES AND HRV

FEATURES FOR BOTH DANCERS.

Sitting Dancing
HRV Features Lead Follow Lead Follow
mean RR -0.07 -0.09 -0.88 0.31
SDRR -0.07 -0.06 -0.39 0.46
RMSSD -0.07 0.09 -0.52 -0.49
pNN50 -0.07 -0.03 -0.52 -0.09
Total power -0.3 -0.15 -0.64 0.31
VLF 0.27 -0.06 0.33 0.06
LF -0.3 -0.15 -0.76 0.62
HF -0.07 -0.44 -0.21 -0.09
LF/HF -0.03 -0.06 -0.03 0.93
LFnorm -0.27 -0.06 -0.03 0.93
HFnorm 0.27 0.06 0.03 -0.93

average correlations across features for the follower dancer
(0.39) compared to lead dancer (0.47).

We explored the synchrony between the dancers in two
ways. First, we calculated the synchrony at the time series
level by calculating the Spearman’s correlation between the
tachograms (tacho) of the two dancers. We also calculated
synchrony at the HRV feature level. This was done by first
creating a time series of the HRV feature epochs over a
given trial for both dancers followed by calculating the
Spearman’s correlation between the dancers. The time series
and feature level synchrony for the different condition-song
pairs are shown in Table V. On average, the correlations
between the time series and feature level synchrony were
higher for dancing conditions than sitting conditions. The
highest tachogram series synchrony was achieved for trial #6
(dancing in open embrace, song Cascabelito). We observed
the highest average correlations for dancing for mean RR
(0.97), sdRR (0.91) and pNN50 (0.73) features.

As can be seen, alpha band powers showed the highest
correlations with flow, thus corroborating findings in [18].
Interestingly, alpha band powers have also been reported
in meditation/relaxation, thus motivating future work on the
effects of Argentine tango and mindfulness. Moreover, the
HRV correlations during dancing showed the importance of

the metric to gauge dancer emotional states, inline with
findings from [21], [22]. While the activity of dancing
may have caused a natural change in heart rate activity,
the correlation changes between lead and follow dancers
suggest the relationship may be more than just an effect
of movement. Overall, this case study has suggested that
it is possible to monitor dancer physiological signals in an
unobtrusive manner, thus opening the door for future studies.
While the findings here have been based on a small sample
size, the obtained findings are promising.

IV. CONCLUSIONS

This article presented a case study of a multimodal-
hyperscanning project where EEG and ECG signals were
simultaneously acquired from lead and follow dancers during
a session Argentine tango. Such project was possible due to
the use of portable devices which are light and comfortable
to wear. Although the execution of movement introduced
artifacts (specifically in the EEG signals), these were effec-
tively removed with artifact removal algorithms. Despite the
fact that the small sample size hindered the generalization of
the outcomes herein presented, the observed correlates with
flow and inter-dancer synchrony during dancing suggest that
multimodal hyperscanning is possible and the open doors
to future studies involving correlates to perceived levels of
depression and stress during dancing therapy.
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[27] C. Mühl, E. L. van den Broek, A.-M. Brouwer, F. Nijboer, N. van
Wouwe, and D. Heylen, “Multi-modal Affect Induction for Affective
Brain-Computer Interfaces,” in Affective Computing and Intelligent
Interaction, ser. Lecture Notes in Computer Science, S. D’Mello,
A. Graesser, B. Schuller, and J.-C. Martin, Eds. Springer Berlin
Heidelberg, Jan. 2011, no. 6974, pp. 235–245, 00009.

[28] R. Gupta, H. J. Banville, and T. H. Falk, “Multimodal Physiological
Quality-of-Experience Assessment of Text-to-Speech Systems,” IEEE
J. Selected Topics Signal Proc., vol. 11, no. 1, pp. 22–36, Feb. 2017.

[29] A.-F. N. M. Perrin, H. Xu, E. Kroupi, M. Řeřábek, and T. Ebrahimi,
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